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summary

This paper introduces a new generalization of the Kumaraswamy transmuted ex-
ponentiated exponential distribution, based on a new family of life time distribu-
tion by Mansour et al.(2015) .We refer to the new distribution as Kumaraswamy
new transmuted exponential (Kw−NTE) distribution. The new model contains
some of lifetime distributions as special cases such as exponentiated exponential,
transmuted exponential and exponential distributions. The properties of the new
model are discussed and the maximum likelihood estimation is used to evaluate
the parameters. Explicit expressions are derived for the moments and examine
the order statistics. This model is capable of modeling various shapes of aging
and failure criteria.
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1 Introduction

The nature of the methodology utilized as a part of a factual examination depends vig-

orously on the expected probability model. On account of it, extensive exertion has been

exhausted in the improvement of substantial classes of standard probability circulations

alongside pertinent measurable philosophies. Be that as it may, there still stay numerous



imperative issues where the genuine information does not take after any of the traditional

or standard probability models.

For complex electronic and mechanical frameworks, the hazard rate frequently shows

non-monotonic (bathtub or upside-down bathtub unimodal) hazard rates (Xie and Lai

(2006). models with such hazard rates have pulled in an impressive consideration of scientists

in unwavering quality building. In programming unwavering quality, bathtub formed hazard

rate is experienced in firmware, and in implanted programming in equipment gadgets. The

upside down bathtub shaped failure rate is used in data of motor bus failures (Mudholkar

et al. (1995), for optimal burn-in decisions (Block and Savits (2010), Chang (2000), for age-

ing properties in reliability (Gupta and Gupta (1983), Jiang et al. (2001) and the course of

a disease whose mortality reaches a peak after some finite period and then declines gradually.

Many of distributions have been made using cumulative distribution function (cdf)G(x),

probability density function (pdf)g(x), or survival function Ḡ(x) that one can rely on, as

a baseline distribution, to introduce new models. The Exponentiated generalization is the

first generalization allowing for non-monotone hazard rates, including the bathtub shaped

hazard rate. The cdfof the new distribution is defined by F (x) = Gα(x), where α > 0. The

exponentiated exponential distribution has been introduced by Ahuja and Nash (1967),

and further studied by Gupta and Kundu (1999). The first generalization allowing for

nonmonotone hazard rates, including the bathtub shaped hazard rate, is the exponentiated

Weibull (EW ) distribution due to Mudholkar and Srivastava (1993), and Mudholkar et

al. (1995). Merovci (2013) introduced transmuted exponentiated exponential distribution.

According to the transmutation generalization approach, the cdf satisfies the relationship,

F (x) = (1 + λ)G(x) − λG(x)
2
, (1.1)

where G(x) the cdf of the baseline distribution.

Mansour et al. (2015a) introduced a modification of the transmutation generalization

approach given in 1.1. The proposed modification generalizes the rank of the transmutation

map by replacing the constant power by additional parameters. The following definition

gives the mechanism of generating a new family of lifetime distributions building on a base

model, that is, according to this modification.

Definition 1.1. Let G(x) be the cumulative distribution function (cdf) of a non-negative

absolutely continuous random variable, G(x) be strictly increasing on its support, and

G(0) = 0 define a new cdf, F (x), outofG(x) as

F (x) = (1 + λ)[G(x)]
δ − λ[G(x)]

α
, (1.2)

where α, δ > 0 if − 1 < λ < 0 and α > 0, α2 6 δ 6 5α
4 if 0 < λ < 1.
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Kumaraswamy (1980) introduced a two-parameter distribution on (0, 1),which will be

referred to by ′′Kw′′ in the sequel.Its cdf is given by

F (x) = 1− (1 − xa)
b
, x ∈ (0, 1), (1.3)

where a > 0 and b > 0 are shape parameters. The model in ( 1.3) compares extremely

favorably in terms of simplicity with the beta cdf, that is, the incomplete beta function

ratio. The pdf corresponding to 1.3 is given by,

f(x) = ab(1− xa)
b−1

, x ∈ (0, 1), (1.4)

The Kw density function has the same basic shape properties of the beta distribution:

a > 1andb > 1 (unimodal); a < 1andb < 1 (uniantimodal); a > 1andb 6 1 (increasing);

a 6 1andb > 1(decreasing); a = b = 1 (constant). The Kw distribution does not seem to

be very familiar to statisticians and has not been investigated systematically in much detail

before. However, Jones (2009) explored the background and genesis of the Kw distribution

and, more importantly, highlighted some advantages and disadvantages of the beta and Kw

distributions.

For an arbitrary baseline cdf,G(x), Cordeiro and Castro (2011) defined the Kw-G dis-

tribution by the pdff(x) and cdfF (x)as

f(x) = a b g(x)Ga−1(x)(1 −Ga(x))b−1, (1.5)

and

F (x) = 1− (1−Ga(x))
b
, (1.6)

respectively, where g(x) = dG(x)/dxandaandb are two extra positive shape parameters.

It follows immediately from ( 1.6) that the Kw − Gdistribution with parent cdfG(x) = x

produces the mini max distribution 1.3. If X is a random variable with pdf 1.5, we write

X Kw−G(a, b), where a and b are additional shape parameters which aim to govern skew-

ness and tail weight of the generated distribution. An alluring element of this model is that

the two parameters a and b can manage the cost of more prominent control over the weights

in both tails and in its middle, Al-Babtain et al. (2015).

The rest of the article is organized as follows. In Section2, introduces the proposed

Kumaraswamy new transmuted exponential model according to the new class of distribution.

In Section 3, we find the reliability function, hazard rate and cumulative hazard rate of the

subject model. The Expansion for the pdf and the cdf Functions is derived in Section

4. In section 5, The statistical properties include quantile functions, median , moments ,

and moment generating function are given,. In Section 6, order statistics are discussed. In

Section 7, we introduce the method of likelihood estimation as point estimation and, give the

equation used to estimate the parameters, using the maximum product spacing estimates

and the least square estimates techniques. Finally, we fit the distribution to two real data

sets to examine it and to suitability it with nested and non-nested models.
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2 Kumaraswamy New Transmuted Exponential Distri-

bution.

A modified transmuted exponential (MTE) distribution with cumulative distribution

function (cdf) denoted byG(x, λ, β, α, δ) ≡ G(x)and probability density function (pdf)(forx >

0) given by

G(x) = (1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
, (2.1)

and the pdf

g(x) = βe−βx][(1 + λ)δ[1 − e−βx]
δ−1 − λα[1 − e−βx]

α−1
], x > 0. (2.2)

where α, δ, β > 0 if − 1 < λ < 0 and α, β > 0, α2 6 δ 6 5α
4 if 0 < λ < 1. by inserting ( 2.1)

into ( 1.6). Then the cumulative distribution function of Kw − NTE model (for x > 0)

denoted byF (x, λ, β, a, b, α, δ) ≡ F (x) becomes

F (x) = 1− (1 − [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a

)
b

, (2.3)

whereas its pdf can be expressed, from ( 2.1),( 2.2) and ( 1.5) as

f(x) = abβe−βx[(1 + λ)δ[1 − e−βx]
δ−1 − λα[1 − e−βx]

α−1
]

× [(1 + λ)[1− e−βx]
δ − λ[1 − e−βx]

α
]
a−1

× (1 − [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a

)
b−1

. (2.4)

A physical interpretation of 2.3 is possible when a and b are positive integers. Suppose

a system is made up of b independent components in series and that each component is

made up of a independent sub-components in parallel. So, the system fails if any of the

b components fail and each component fails if all of its a subcomponents fail. If the sub-

component lifetimes have a common NTE cumulative function, then the lifetime of the

entire system will follow theKw −NTEdistribution 2.3.

Furthermore, we can interpret the system from the redundancy view. Redundancy is

a common method to increase reliability in an engineering design. Barlow and Proschan

(1981) indicate that, if we want to increase the reliable of a given system, then redundancy

at a component level is more effective than redundancy at a system level. That is, if all

components of a system are available in duplicate, it is better to put these component pairs

in parallel than it is to build two identical systems and place the systems in parallel.

The importance of the proposed Kw − NTE model that it is flexible model that ap-

proaches to different distributions when its parameters are changed. The flexibility of the

Kw −NTE is explained in (Table 1) when their parameters are carefully chosen.
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Table 1: The special cases of the Kw −NTE distribution.

Parameters

Distribution λ β a b α δ Author

Kw − E 0 1

Kw − EE 0

Kw − TEE α
2

MTE 1 1 Mansour et al. (2015)

E 0 1 1 1

TE 1 1 2 1

EE 0 1 1 0 Gupta and Kundu (1999)

EE 1 1 α
2 Merovci(2013)

Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of the Kw −
NTE distribution for selected values of the parameters λ, β, a, b, δ and α respectively.

(a) (b)

Figure 1: Probability Density Function of the Kw −NTE distribution.

3 Reliability Analysis

The characteristics in reliability analysis which are the reliability function (RF ), the

hazard rate function (HF ) and the cumulative hazard rate function (CHF ) for theKw −
NTEare introduces in this section.
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(a) (b)

Figure 2: Distribution Function of the Kw −NTE distribution.

3.1 Reliability Function

The reliability function (RF ) also known as the survival function, which is the probabil-

ity of an item not failing prior to some time t, is defined by R(x) = 1−F (x). The reliability
function of the Kumaraswamy new transmuted Exponential distributionKw−NTE denoted

by RKw−NTE(λ, β, a, b, α, δ), can be a useful characterization of life time data analysis. It

can be defined as,

RKw−NTE(λ, β, a, b, α, δ) = 1− FKw−NTE(λ, β, a, b, α, δ)

RKw−NTE(λ, β, a, b, α, δ) = (1− [(1 + λ)[1− e−βx]
δ − λ[1 − e−βx]

α
]
a

)
b

. (3.1)

Figure 3 illustrates the pattern of the called the Kumaraswamy new transmuted Expo-

nential (Kw − NTE) distribution reliability function with different choices of parameters

λ, β, a, b, δ and α

3.2 Hazard Rate Function

The other characteristic of interest of a random variable is the hazard rate function

(HF ). the Kumaraswamy new transmuted Exponential distribution also known as instan-

taneous failure rate denoted by hKw−NTE(x), is an important quantity characterizing life

phenomenon. It can be loosely interpreted as the conditional probability of failure, given it

has survived to the time t. The HF of the MTE is defined by
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(a) (b)

Figure 3: Reliability Function of the Kw −NTE distribution.

hKw−NTE(λ, β, a, b, α, δ) =abβe
−βx[(1 + λ)δ[1 − e−βx]

δ−1 − λα[1 − e−βx]
α−1

]

× [(1 + λ)[1− e−βx]
δ − λ[1 − e−βx]

α
]
a−1

1− [(1 + λ)[1− e−βx]
δ − λ[1 − e−βx]

α
]
a .

(3.2)

Figure 4 illustrates some of the possible shapes of the hazard rate function of the Ku-

maraswamy new transmuted Exponential distribution for different values of the parameters

λ, β, a, b, δ and α .
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(a) (b)

Figure 4: Hazard Rate of the Kw −NTE distribution.

The Kw −NTE model due to its flexibility in accommodating all forms of the hazard

rate function as seen from Figure 4 (by changing its parameter values) seems to be an

important distribution that can be used.

3.3 Cumulative Hazard Rate Function

The cumulative hazard function (CHF ) of the modified transmuted exponential distribu-

tion, denoted by HKw−NTE(λ, β, a, b, α, δ) is defined as

HKw−NTE(λ, β, a, b, α, δ) =

∫ x

0

hKw−NTE(λ, β, a, b, α, δ)dx = − lnRKw−NTE(λ, β, a, b, α, δ),

HKw−NTE(λ, β, a, b, α, δ) = − ln((1 − [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a

)
b

). (3.3)

4 Expansion for the pdf and the cdf Functions

In this section we introduced another expression for the pdf and the cdf functions using.

The Maclaurin expansion to simplifying the pdf and the cdf forms.

4.1 Expansion for the pdf Function

From equation 2.4 and using the expansions

(1− z)
k−1

=

∞∑

j=0

(−1)
j
Γ(k)

Γ(k − 1)j!
zj. (4.1)
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Which holds for |z| < 1 and k > 0.

Using 4.1 and applying it to the term

(
1− [(1 + λ)[1 − e−βx]

δ − λ[1− e−βx]
α
]
a
)b−1

, the

pdf of the Kw −NTE model can be written as

f(x) = a b β e−βx

∞∑

i=0

(−1)iΓ(b)

Γ(b− 1)i!
[(1 + λ)δ[1− e−βx]

δ−1 − λα[1 − e−βx]
α−1

]

× (1 + λ)
a(i+1)−1

(1− e−βx)
δ(a(i+1)−1)

[
1− λ[1− e−βx]

α

(1 + λ)[1 − e−βx]
δ

]a(i+1)−1

, (4.2)

which holds for

∣∣∣∣
λ[1−e−βx]

α

(1+λ)[1−e−βx]δ

∣∣∣∣ < 0.

Using 4.1 and applying it to the term

[
1− λ[1−e−βx]

α

(1+λ)[1−e−βx]δ

]a(i+1)−1

in 4.2,the pdf of the

Kw −NTE model can be written as

f(x) = a b β e−βx

∞∑

i=0

∞∑

j=0

(−1)
(i+j)

Γ(b)Γ(a(i+ 1))

i!j!Γ(b− 1)Γ(a(i + 1)− j)

× [(1 + λ)δ[1 − e−βx]
δ−1 − λα[1 − e−βx]

α−1
]

× λj(1 + λ)a(i+1)−j−1(1 − e−βx)
δ(a(i+1)−j−1)+αj−δj

. (4.3)

Using Binomial expansion and applying it to the term [(1+λ)δ[1 − e−βx]
δ−1−λα[1 − e−βx]

α−1
]

in4.3,the pdf of the Kw −NTE model can be written as

f(x) = a b β e−βx

∞∑

i=0

∞∑

j=0

1∑

k=0

(−1)
(i+j+k)

Γ(b)Γ(a(i + 1))

i!j!Γ(b− 1)Γ(a(i+ 1)− j)

× αkδ1−kλj+k(1 + λ)
a(i+1)+(1−k)−j−1

× (1 − e−βx)
δ(a(i+1)−j−1)+αj−δj+(δ−1)(1−k)+(α−1)k

. (4.4)

Using 4.1 and applying it to the term(1− e−βx)
δ(a(i+1)−j−1)+αj−δj+(δ−1)(1−k)+(α−1)k

in

4.4,the pdf of the Kw −NTE model can be written as

f(x) = a b β

∞∑

i,j,l=0

1∑

k=0

(−1)
(i+j+k)

Γ(b)Γ(a(i + 1))

i!j!Γ(b− 1)Γ(a(i+ 1)− j)

× Γ(δ(a(i + 1)− j − 1) + αj − δj + (δ − 1)(1− k) + (α− 1)k + 1)

Γ(δ(a(i + 1)− j − 1) + αj − δj + (δ − 1)(1− k) + (α− 1)k − l + 1)

× αkδ1−kλj+k(1 + λ)a(i+1)+(1−k)−j−1e−βx(l+1). (4.5)
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The pdf of Kw −NTE distribution can then be represented as

f(x) =
∞∑

i,j,l=0

1∑

k=0

Ai:ke
−βx(l+1), (4.6)

where Ai:k is a constant term given by

Ai:k =a b β
(−1)

(i+j+k)
Γ(b)Γ(a(i + 1))

i!j!Γ(b− 1)Γ(a(i+ 1)− j)

× Γ(δ(a(i + 1)− j − 1) + αj − δj + (δ − 1)(1− k) + (α − 1)k + 1)

Γ(δ(a(i + 1)− j − 1) + αj − δj + (δ − 1)(1− k) + (α − 1)k − l + 1)

× αkδ1−kλj+k(1 + λ)a(i+1)+(1−k)−j−1.

4.2 4.2 Expansion for the cdf Function

Using expansion 4.1 to Equation 4.2,then the cdf function of the Kw−NTE can be written

as:

F (x) =
∞∑

i,j,k=0

Bi:ke
−βkx, (4.7)

where Bi:k is a constant term given by:

Bi:k =
(−1)(i+j+k)Γ(b+ 1)Γ(ai+ 1)Γ(δ(ai− j) + αj + 1)

i!j!k!Γ(b− i+ 1)Γ(ai− j + 1)Γ(delta(ai− j) + αj − k + 1

× λj(1 + λ)
ai−j

.

4.3 Statistical properties

In this section we discuss the most important statistical properties of the Kw − NTE

distribution.

4.4 Quantile function

The quantile function is obtained by inverting the cumulative distribution 4.7, where the

p− th quantile xpof the Kw −NTE model is the real solution of the following equation:

1−
∞∑

i,j,k=0

Bi:ke
−βkxp − p = 0.

An expansion for the median M follows by taking p = 0.5.
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4.5 5.2 Moments

The rthnon-central moments or (moments about the origin) of the Kw−NTE under using

equation 4.6 is given by

µ′r = E(xr) =

∫ ∞

0

xrf(x)dx,

µ′r =

∫ ∞

0

xr
[ ∞∑

i,j,l=0

1∑

k=0

Ai:ke
−βx(l+1)

]
dx,

then,

µ′r =

∞∑

i,j,l=0

1∑

k=0

Ai:k
Γ(r + 1)

(
β(l + 1)

)r+1 . (4.8)

In particular, when r = 1, Eq.4.8 yields the mean of the Kw −NTE distribution, µ , as

µ =

∞∑

i,j,l=0

1∑

k=0

Ai:k
1

(
β(l + 1)

)2 ,

The nthcentral moments or (moments about the mean) can be obtained easily from the rth

non-central moments throw the relation:

mu = E(x− µ)
n
=

n∑

r=0

(−µ)(n−r)
E(xr).

Then the nth central moments of the Kw −NTE is given by,

mu =

n∑

r=0

∞∑

i,j,l=0

1∑

k=0

Ai:k
Γ(r + 1)

(
β(l + 1)

)r+1 (−µ)
(n−r)

.

4.6 The Moment Generating Function

The moment generating function,Mx(t), can be easily obtained from the rthnon-central

moment through the relation

Mx(t) =

∞∑

r=0

tr

r!
µ′r,

or

Mx(t) =

∫ ∞

0

etxf(x)dx,

Mx(t) =

∫ ∞

0

etx
∞∑

i,j,l=0

1∑

k=0

Ai:ke
−βx(l+1)dx,

Then, the moment generating function of the Kw −NTE distribution is given by,

Mx(t) =

∞∑

i,j,l=0

1∑

k=0

Ai:k

β(l + 1) + t
.
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5 Order Statistics

Let X1, X2, , Xndenote n-independent random variables from a distribution function FX(x)

with pdffX(x). Let X(1), X(2), , X(n)be the ordered sample arrangement. The pdf of X(j) is

given by,

fXj
(x) =

n!

(j − 1)!(n− j)!
fX(x)

[
FX(x)

](j−1)[
1− FX(x)

](n−j)
, j = 1, 2, ..., n.

Then from 2.3 and 2.4 the pdf of X(j) is given by:

fXj
(x) =

n!

(j − 1)!(n− j)!
abβe−βx[(1 + λ)δ[1 − e−βx]

δ−1 − λα[1 − e−βx]
α−1

]

× [(1 + λ)[1 − e−βx]
δ − λ[1 − e−βx]

α
]
a−1

× (1− [(1 + λ)[1− e−βx]
δ − λ[1 − e−βx]

α
]
a

)
b−1

×
(
1−

(
1− [(1 + λ)[1− e−βx]

δ − λ[1 − e−βx]
α
]
a)b)j−1

×
[
1−

(
1−

(
1− [(1 + λ)[1 − e−βx]

δ − λ[1− e−βx]
α
]
a)b)

]n−j

.

Therefore, the pdfs of the smallest and the largest order statistic are respectively given

by:

fX(1)
(x) =nabβe−βx[(1 + λ)δ[1 − e−βx]

δ−1 − λα[1 − e−βx]
α−1

]

× [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a−1

× (1 − [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a

)
b−1

×
[
1−

(
1−

(
1− [(1 + λ)[1 − e−βx]

δ − λ[1− e−βx]
α
]
a)b)

]n−1

,

and

fX(n)
(x) =nabβe−βx[(1 + λ)δ[1 − e−βx]

δ−1 − λα[1 − e−βx]
α−1

]

× [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a−1

× (1− [(1 + λ)[1 − e−βx]
δ − λ[1− e−βx]

α
]
a

)
b−1

×
(
1−

(
1− [(1 + λ)[1 − e−βx]

δ − λ[1− e−βx]
α
]
a)b)n−1

.

6 Estimation of the Parameters
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In this section we introduce the method of likelihood to estimate the parameters involved

then gives the equation used to estimate the parameters using the maximum product spacing

estimates and the least square estimates techniques.

6.1 Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) for the parameters of Kumaraswamy new

transmuted exponential distribution Kw −NTE(λ, β, a, b, α, δ) is discussed in this section.

Consider the random sample of size n from Kw−NTE(λ, β, a, b, α, δ) with probability den-

sity function in 2.4, then the likelihood function can be expressed as follows

L(x1, x2, ..., xn, λ, β, a, b, α, δ) = L =

n∏

i=1

fKw−NTE(xi, λ, β, a, b, α, δ),

L =

n∏

i=1

abβe−βxi[(1 + λ)δ[1 − e−βxi]
δ−1 − λα[1 − e−βxi]

α−1
]

×
n∏

i=1

[(1 + λ)[1− e−βxi ]
δ − λ[1− e−βxi]

α
]
a−1

×
n∏

i=1

(1 − [(1 + λ)[1 − e−βxi]
δ − λ[1− e−βxi ]

α
]
a

)
b−1

. (6.1)

Hence, the log-likelihood function ζ = lnL becomes,

ζ =n ln(a) + n ln(b) + n ln(β)−
n∑

i=1

βxi

+

n∑

i=1

ln

[
(1 + λ)δ[1 − e−βxi]

δ−1 − λα[1 − e−βxi]
α−1

]

+

n∑

i=1

(a− 1) ln

(
(1 + λ)[1− e−βxi ]

δ − λ[1− e−βxi]
α
)

+
n∑

i=1

(b− 1) ln

(
(1− [(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α
]
a

)

)
. (6.2)

Differentiating Equation 6.2 with respect to λ, β, a, b, α and δ then equating it to zero, we
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obtain the MLEs of λ, β, a, b, α and δ as follows,

∂ζ

∂λ
=

n∑

i=1

[
δ[1− e−βxi]

δ−1 − α[1 − e−βxi]
α−1

[
(1 + λ)δ[1 − e−βxi]

δ−1 − λα[1 − e−βxi]
α−1]

]

+

n∑

i=1

[
(a− 1)

[
[1− e−βxi]

δ − [1− e−βxi]
α]

(
(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α)
]

−
n∑

i=1

[
a(b− 1)

(
(1 + λ)[1 − e−βxi]

δ − λ[1 − e−βxi]
α)a−1

(1− [(1 + λ)[1− e−βxi ]
δ − λ[1− e−βxi]

α
]
a
)

]

×
(
[1− e−βxi]

δ − [1− e−βxi ]
α)
, (6.3)

∂ζ

∂β
=
n

β
−

n∑

i=1

xi +

n∑

i=1

[
xie

−βxi
[
(1 + λ)δ(δ − 1)[1− e−βxi]

δ−2 − λα(α − 1)[1− e−βxi]
α−2]

[
(1 + λ)δ[1− e−βxi ]

δ−1 − λα[1 − e−βxi]
α−1]

]

+

n∑

i=1

[
(a− 1)xie

−βxi
[
(1 + λ)δ[1 − e−βxi ]

δ−1 − λα[1 − e−βxi ]
α−1]

(
(1 + λ)[1 − e−βxi]

δ − λ[1 − e−βxi]
α)

]

−
n∑

i=1

[
(b− 1)axie

−βxi[(1 + λ)[1− e−βxi ]
δ − λ[1− e−βxi]

α
]
a−1

(1− [(1 + λ)[1 − e−βxi]
δ − λ[1− e−βxi ]

α
]
a
)

]
, (6.4)

∂ζ

∂a
=
n

a
+

n∑

i=1

ln
(
(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α)

−
n∑

i=1

[
(b− 1)[(1 + λ)[1 − e−βxi]

δ − λ[1 − e−βxi]
α
]
a

)

(1− [(1 + λ)[1 − e−βxi]
δ − λ[1 − e−βxi]

α
]
a
)

]

× ln
(
(1 + λ)[1 − e−βxi ]

δ − λ[1 − e−βxi]
α)
, (6.5)

∂ζ

∂b
=
n

a
+

n∑

i=1

ln
[
1− [(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α
]
a]
, (6.6)

∂ζ

∂α
=

n∑

i=1

[
(−λ)α[1 − e−βxi ]

α−1
[α ln([1− e−βxi]) + 1]

[
(1 + λ)δ[1 − e−βxi]

δ−1 − λα[1 − e−βxi]
α−1]

]

−
n∑

i=1

(a− 1)

[
(λ)[1 − e−βxi ]

α
ln[1− e−βxi]

(
(1 + λ)[1 − e−βxi]

δ − λ[1 − e−βxi]
α)
]

+

n∑

i=1

[
(b − 1)a(λ)[1− e−βxi]

α
ln[1− e−βxi ]

[
1− [(1 + λ)[1 − e−βxi]

δ − λ[1 − e−βxi]
α
]
a]
]

× [(1 + λ)[1 − e−βxi]
δ − λ[1 − e−βxi]

α
]
a−1

, (6.7)
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and

∂ζ

∂δ
=

n∑

i=1

[
(1 + λ)δ[1 − e−βxi]

δ−1
[δ ln([1 − e−βxi]) + 1]

[
(1 + λ)δ[1 − e−βxi]

δ−1 − λα[1 − e−βxi]
α−1]

]

+

n∑

i=1

(a− 1)

[
(1 + λ)[1 − e−βxi]

δ
ln[1 − e−βxi]

(
(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α)
]

−
n∑

i=1

[
(b− 1)a(1 + λ)[1 − e−βxi]

δ
ln[1− e−βxi]

[
1− [(1 + λ)[1 − e−βxi]

δ − λ[1− e−βxi ]
α
]
a]
]

× [(1 + λ)[1− e−βxi ]
δ − λ[1− e−βxi]

α
]
a−1

. (6.8)

The maximum likelihood estimator ϑ̂ = (λ̂, β̂, â, b̂, α̂, δ̂) of ϑ = (λ, β, a, b, α, δ) is obtained

by solving the nonlinear system of equations 6.3 through 6.7. It is usually more convenient

to use nonlinear optimization algorithms such as quasi-Newton algorithm to numerically

maximize the log-likelihood function.

6.2 Maximum product spacing estimates

The maximum product spacing (MPS) method has been proposed by Cheng and Amin

(1983). This method is based on an idea that the differences (Spacing) of the consecutive

points should be identically distributed. The geometric mean of the differences is given as

GM = n+1

√√√√
n+1∏

i=1

Di, (6.9)

where, the difference Di is defined as

Di =

∫ x(i)

x(i−1)

f(x, λ, β, a, b, α, δ)dx : i = 1, 2, ..., n+ 1, (6.10)

where, F (x(0), λ, β, a, b, α, δ) = 0 and F (x(n+1), λ, β, a, b, α, δ) = 0. The MPS estimators

λ̂ps, β̂ps, âps, b̂ps, δ̂ps and α̂ps of λ, β, a, b, δ and α are obtained by maximizing the geometric

mean (GM) of the differences. Substituting pdf of Kw − NTE distribution in 6.10 and

taking logarithm of the above expression, we will have

logGM =
1

n+ 1

n+1∑

i=1

log

[
F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
. (6.11)

The MPS estimators λ̂ps, β̂ps, âps, b̂ps, δ̂ps and α̂ps of λ, β, a, b, δ and α can be obtained as

the simultaneous solution of the following non-linear equations:

∂logGM

∂λ
=

1

n+ 1

n+1∑

i=1

[
F ′λ(x(i), λ, β, a, b, α, δ)− F ′λ(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0,
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∂logGM

∂β
=

1

n+ 1

n+1∑

i=1

[
F ′β(x(i), λ, β, a, b, α, δ)− F ′β(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0,

∂logGM

∂a
=

1

n+ 1

n+1∑

i=1

[
F ′a(x(i), λ, β, a, b, α, δ)− F ′a(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0,

∂logGM

∂b
=

1

n+ 1

n+1∑

i=1

[
F ′b(x(i), λ, β, a, b, α, δ)− F ′b(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0,

∂logGM

∂δ
=

1

n+ 1

n+1∑

i=1

[
F ′δ(x(i), λ, β, a, b, α, δ)− F ′δ(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0,

and

∂logGM

∂α
=

1

n+ 1

n+1∑

i=1

[
F ′α(x(i), λ, β, a, b, α, δ)− F ′α(x(i−1), λ, β, a, b, α, δ)

F (x(i), λ, β, a, b, α, δ)− F (x(i−1), λ, β, a, b, α, δ)

]
= 0.

6.3 Least square estimates

Let x(1), x(2), , x(n) be the ordered sample of size n drawn the Kw − NTE distribution.

Then, the expectation of the empirical cumulative distribution function is defined as

E

[
F (X(i))

]
=

i

n+ 1
i = 1, 2, ..., n. (6.12)

The least square estimates λ̂LS , β̂LS , âLS, b̂LS , δ̂LS and α̂LS of λ, β, a, b, δ and α are

obtained by minimizing

Z(λ, β, a, b, δ, α) =

n+1∑

i=1

[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]2
.

Therefore, λ̂LS , β̂LS , âLS, b̂LS, δ̂LSandα̂LS of λ, β, a, b, δandα can be obtained as the solution

of the following system of equations:

∂Z(λ, β, a, b, δ, α)

∂λ
=

n+1∑

i=1

F ′λ(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0,

∂Z(λ, β, a, b, δ, α)

∂β
=

n+1∑

i=1

F ′β(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0,

∂Z(λ, β, a, b, δ, α)

∂a
=

n+1∑

i=1

F ′a(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0,

∂Z(λ, β, a, b, α, α)

∂b
=

n+1∑

i=1

F ′b(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0,
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∂Z(λ, β, a, b, δ, α)

∂δ
=

n+1∑

i=1

F ′δ(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0,

and

∂Z(λ, β, a, b, α, α)

∂α
=

n+1∑

i=1

F ′α(x(i), λ, β, a, b, δ, α)
[
F (x(i), λ, β, a, b, δ, α)−

i

n+ 1

]
= 0.

These non-linear can be routinely solved using Newton’s method or fixed point iteration

techniques. The subroutines to solve non-linear optimization problem are available in R.

We used nlm() package for optimizing 6.2.
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7 Simulation algorithms

In this section we give an algorithm, using R software, to simulate data from the Kw−NTE
model.

7.1 Inverse CDF method

Since the probability integral transformation cannot be applied explicitly, we, therefore

need to follow the following steps for generating a sample of size n from Kw − NTE

(λ, β, a, b, α, α):

Step1: Set n, λ, β, a, b, α, α and initial value x0.

Step2: GenerateU ∼ Uniform(0,1).

Step3: Update x0 by using the Newton’s formula

x∗ = x0 −R(x0,Θ),

where, R(x0,Θ) = Fx(x
0,Θ)−U

fx(x0,Θ) , Fx(.) and fx(.) are cdf and pdf of Kw −NTE distribution,

respectively.

Step4: If |x0 − x∗| ≤ ε, (very small, ε > 0 tolerance limit), then store x = x∗ as a sample

from Kw −NTE distribution.

Step5: If |x0 − x∗ > ε,, then, setx0 = x∗and go to step 3.

Step6: Repeat steps 3-5, n times for x1, x2, , xnrespectively.

7.2 Simulation Study

This subsection explores the behaviors of the proposed estimators in terms of their mean

square error on the basis of simulated samples from pdf of Kw−NTE with varying sample

sizes. We take λ = −0.55, β = 3, a = 2, b = 4, δ = 3, andα = 2 arbitrarily and n=10(10)100.

The algorithms are coded in R, and the algorithm given in 8.1 has been used for simulation

purposes. We calculate MLE estimators of λ, β, a, b, δ and α based on each generated sample.

This simulation is repeated 1000 of times, and average estimates with corresponding mean

square errors are computed and reported in Table 2.

64



Table 2: Estimates and mean square errors (in 2-nd row of each cell) of the proposed
estimators with varying sample size.

MLE

n λ β a b δ α

10 -0.5024 3.6501 2.0652 4.8801 3.0175 2.5544

0.1270 1.9205 0.0885 1.9961 0.1300 1.2817

20 -0.5058 3.4466 2.0622 4.8455 3.0022 2.2391

0.0489 1.4783 0.0722 0.4558 0.0507 0.3825

30 0.5406 2.9786 2.0381 4.8336 3.9949 2.1573

0.0299 0.4971 0.0364 0.2553 0.0307 0.2298

40 -0.5634 2.8352 2.0146 4.8654 3.9952 2.1215

0.0253 0.3510 0.0312 0.2419 0.0224 0.1590

50 -0.6013 2.7542 2.0203 4.8742 3.9954 2.0965

0.0181 0.2685 0.0269 0.1802 0.0184 0.1252

60 -0.6101 2.8154 2.0106 4.9612 3.9956 2.0804

0.0168 0.2379 0.0187 0.1379 0.0148 0.0998

70 -0.6310 2.7223 3.0101 4.9700 3.9966 2.0711

0.0119 0.2175 0.0112 0.1175 3.0125 0.0872

80 -0.6627 2.7700 2.0100 4.9932 3.9978 2.0553

0.0100 0.0109 0.0132 0.1089 4.0106 0.0671

90 -0.6688 2.6920 2.0104 4.9943 3.9992 2.0511

0.0089 0.0089 0.0073 0.0784 3.0095 0.0619

100 -0.6802 2.6518 2.0087 4.9938 3.9982 2.0471

0.0061 0.0085 0.0082 0.0675 0.0087 0.0545

From Table 2, it can be clearly observed that as sample size increases the mean square

error decreases, which proves the consistency of the estimators.

8 Applications

In this section, we use two real data sets to compare the fits of theKw −NTEdistribution

with three sub-models and Weibull model. In each case, the parameters are estimated by
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maximum likelihood as described in Section 7, using the R code.

8.1 Data Set-1

The first data set represents failure time of 50 items reported in Aarset (1987). In order to

compare the two distribution models, we consider criteria like KS(Kolmogorov Smirnov),

−2L,AIC (Akaike information criterion), AICC(corrected Akaike information criterion),

and BIC (Bayesian information criterion) for the data set. The better distribution corre-

sponds to smaller KS, −2L,AIC and AICC values:

AIC = −2L+ 2k,

AICC = −2L+

(
2kn

n− k − 1

)
,

and

BIC = −2L+ k log(n),

where L denotes the log-likelihood function evaluated at the maximum likelihood estimates,

k is the number of parameters, and n is the sample size. Also, for calculating the values of KS

we use the sample estimates of λ, β, a, b, δ andα . Table 3 shows the parameter estimation

based on the maximum likelihood and gives the values of the criteria AIC,AICC , BIC,

andKS test. The values in Table 3 indicate that the Kw − NTE distribution leads to a

better fit over all the other models.

Table 3: MLEs the measures AIC,AICC , BIC, and KS test to failure time data for the
models

Model Parameter Standard −LogL AIC AICC BIC KS

Estimates Error

Kw λ̂ = −0.957 0.02620 217.6843 447.3686 448.4848 458.8407 0.1082

−NTE β̂ = 0.035 0.0034

â = 107.4 61.41

b̂ = 75.964 32.61

α̂ = 25.7 0.003

δ̂ = 0.006 15.25

TEE λ̂ = −0.481 0.2728 238.689 483.3793 483.9011 489.1154 0.1662

β̂ = 0.6594 0.0038

α̂ = 0.0209 0.0038

EE β̂ = 2.61 0.2381 239.9733 483.9467 484.2021 487.7708 0.1843

α̂ = 31.34 9.525

W β̂ = 5.78 0.5762 240.979 485.95 486.2145 489.7832 0.1729

λ̂ = 0.614 0.0139

E β̂ = 0.021 0.0031 241.067 484.1354 484.218 486.0474 0.171
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Figure 5: Estimated densities of data set 1.

Figure 6: Empirical, fitted Kw −NTE, transmuted exponentiated exponential, exponenti-
ated exponential , Weibull , and exponential distributions of data set 1.
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Figure 7: Probability plots for the fits Kw−NTE, transmuted exponentiated exponential,
exponentiated exponential , Weibull , and exponential distributions 1.
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8.2 Data Set 2

The second data set represents the ages for 155 patients of breast tumors taken from (June-

November 2014), whose entered in (Breast Tumors Early Detection Unit, Benha Hospital

University, Egypt)reported in Mansour et al (2015). The values in Table 4 indicate that the

Kw −NTE distribution leads to a better fit over all the other models.

Table 4: MLEs the measures AIC,AICC , BIC, andKS test to 155 patients of breast tumors
data for the models.

Model Parameter Standard −LogL AIC AICC BIC KS

Estimates Error

Kw λ̂ = −0.756 0.116 598.35 1208.7 1209.03 1226.97 0.074

−NTE β̂ = 0.116 0.019

â = 10.14 5.522

b̂ = 1.114 0.363

α̂ = 45.83 26.98

δ̂ = 1.115 0.829

TEE λ̂ = −0.77 0.122 606.38 1218.7 1218.9 1227.90 0.10

β̂ = 21.88 5.263

α̂ = 0.095 0.0058

EE β̂ = 0.086 0.005 611.2 1226.4 1226.5 1232.5 0.11

α̂ = 25.59 4.974

W β̂ = 3.687 0.208 610.29 1224.5 1224.6 1230.68 0.13

λ̂ = 0.020 0.0004

E β̂ = 0.022 0.0018 740.31 1482.6 1482.6 1485.6 0.408

These results indicate that theKw−NTE model has the lowestAIC,AICC ,KSandBIC

values among the fitted models. The values of these statistics indicate that the Kw−NTE

model provides the best fit to all of the data.
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Figure 8: Estimated densities of data set 2.

Figure 9: Empirical, fitted Kw −NTE, transmuted exponentiated exponential, exponenti-
ated exponential , Weibull , and exponential distributions of data set 2.
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Figure 10: Probability plots for the fits of the Kw − NTE, transmuted exponentiated
exponential, exponentiated exponential, Weibull, and exponential distributions of data set
2.

Concluding remarks

There has been an extraordinary enthusiasm among statisticians and connected specialists

in developing adaptable lifetime models to encourage better demonstrating of survival in-

formation. Hence, a huge advancement has been made towards the speculation of some

surely understood lifetime models and their fruitful application to issues in a few ranges. In

this paper, we present another six-parameter model got utilizing the Kumaraswamy gener-

alization technique. We refer to the new model as the Kw −NTE distribution and study

some of its mathematical and statistical properties. We provide the pdf, the cdf and the

hazard rate function of the new model, explicit expressions for the moments. The model
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parameters are estimated by maximum likelihood and method of moment. The new model

is compared with nested and non nested models and provides consistently better fit than

other lifetime models. We hope that the proposed distribution will serve as an alternative

model to other models available in the literature.
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